e
.

AD-A267 534

o Causality-Preserving Timestamps
i | , in Distributed Programs

me—
aev—"

B Adam Beguelin Erik Seligman
: x : June 1993
| CMU-CS-93-167

93-17757
IIIIIIIII!I .

o3 3 4 022

Causality-Preserving Timestamps
in Distributed Programs

Adam Beguelin Erik Seligman

June 1993
CMU-CS-93-1067

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

"This research was sponsored in part by the Defense Advanced Reser ch Projects
Agency, Information Science and Technology Office, under the title “Rescarcii on Parallel
Computing”, ARPA Order No. 7330, issued by DARPA/CMO under Clontract MDANTZ-
90-C-0035. Support was also provided by a Nationai Science Foundation graduate fellow-

ship awarded to Erik Seligman. v
The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the official policies, either expressed or implied,
of the 1J.S. Government.

Keywords: Distributed.parallel.timestamps.logical timestamps.supercompnt ine.clock.
monitoring,debugging.tachyon,causality

Abstract

A tachyonis an improperly ordered event in a distributed program. Tachyvons
are most often manifested as messages which are received before they are
sent, violating the principle of causality. Although tachvons are not possible
in “real life”. they may appear to occur in distributed parallel program traces
due to coarse clock granularity or poor clock synchronization. In this paper.
we establish that tachyons do in fact occur commonly in distributed pro-
grams on our Ethernet at Carnegie Mellon University. and we discuss some
ways of eliminating them from program traces while preserving at least some
knowledge of the length of time intervals in our programs. Qur methods are
based on Lamport-style clock corrections: when a process receives a message
stamped with a later sending time. it sets its own clock ahead to a time at
least as great as the sending timestamp. We have implemented this both in
real time and in a more comprehensive post-processor for Xab.

e e —

Ager23tant For

TNt el ——_’7‘—

[
H o

(AR !
DR . .

L du

C B
R

DTIC QUALITY INSPECTED 3

pise

i

!
(
‘

|1

s

RN

S0

e

|
{
}
|

1 Introduction

When writing and debugging parallel programs. many programmers find it
useful to be able to view an event frace. a sequential listing of each communi-
cation event and the time it has occurred. Many useful tools. such as Xab [4]
and ParaGraph [7], have been created to better visualize parallel program
traces.

One important property that we would like these traces to observe is the
preservation of causality; if event A\ could have caused event B. then event A
must have happened at an earlier time than B. A message that does not obey
this property (it is received before it is sent) is called a tachyon. Clearly it is
very disconcerting to try to debug a parallel program that contains tachyons.

Of course, in “real life”, causality cannot be violated. In a trace file of a
distributed parallel program, however, causality violations can appear. due
to poor clock granularity or poor clock synchronization. In this paper. we
establish that these causality violations do in fact occur. and discuss some
ways to eliminate them from trace files.

2 The Problem

As discussed above, one important property that a trace file should have is
that the timestamps reported in a program trace preserve causality. We say
event A causally precedes event B (see [3]) if

e Events A and B occur at the same process, and A occurs before B.
e Event A sends a message received during event B, or
e There is an event (' such that A precedes (" and (' precedes .

If event A causally precedes event B, then the “real time™ at which \ occurred
must be earlier than the time at which B occurred. If the timestamps in the
program trace obey this commonsense property. then the program flow will
conform to our notions of causality. and flow graphs created by utilities such
as ParaGraph will not show messages travelling backwards in time.

In order to determine if causality violations occurred, we ran a small
test program on approximately ten machines (including Sun-t’s and Piax’s.
all running Mach) connected by Ethernet here at Carnegie Mellon. The

program was written using PVM version 3.1 (see [2. 3. 6. 10]), and consisted
of a “"master” process on one machine and a slave process on each of the
others. Every five minutes, the master process would awaken and do the
following for each slave:

1. Get the current time MI1.

2. Send a message to the slave.

3. Wait for a reply message.

4. Get the time M2 immediately after receiving the reply message.

5. Read the values S1 and S2 from the reply. where S1 is the time at the
slave just after receiving the original message and S2 is the time at the
slave just before sending its reply.

6. Calculate the values (S1-M1) and (M2-52); if either of these is negative.
we have found a tachyon.

The slave programs were very simple:

1. Wait for a message from the master; upon receipt. get the time Sli.

o]

. Get the time S2, and write SI and S2 in a reply message.
3. Send the reply to the master, and go back to step 1.

The time differences for messages from the master to the slaves during
one trial are shown in figure 1. The x-axis represented the iteration num-
ber; as mentioned above. the iterations were five minutes apart. The v-axis
represents the time difference measured in microseconds. Each point on the
graph represents the time difference (S1-M1) for one message from the mas-
ter to a slave process. (The messages from the slaves to the master are not
represented.) For several iterations. the time differences were very large (up
to 1.9 * 10° microseconds), and were omitted from the graph.

Tachyons turned out to be more common than we had expected. We
observed two types of tachyons:

Fig. 1: Measured Message Travel Times

200000 T — — . — :
o time differences 9
o I
o granularity bound -----
150000 ° 8 7
°
5 100000 - o 1
9 °
5 co3sdsgo,
~ °
°
g 50000 o, ¢ 8, Oogﬂo ° b
$ § ° 4 500 8 § 2 o o
8 o %2 ¢ o © g °g o2 °o é
2 . e ° © °°°°Q° 06 ,%002 sgggo
w 0 CTgTTTT §-g-o-grmoomoee- IR AK - 6"6"6‘3"5“5""8"0"b"g‘"""
.. . Qo9
"; s g s 0°°g.§§08°° s
£ > 8 :o o°°e§e°888°
& -50000 %8 S 8§98°%0° 09°7 07
g o 1 °
(-3 8 8 i3
8
-100000 ° S © -
_150000 L i L L i .
0 5 10 15 20 25 33

Iteration Nuwmber (5 minute intervals)

Figure 1: Measured Message Travel Times. Each point represents the differ-
ence between send and receive times for one message.

e Tachyons which appear due to poor clock granularity. If the svstem
clock only changes every 15 milliseconds. for example. and a message
travels more quickly than that. then the difference between the times
observed at the sender and receiver will be essentially meaningless.
(We measured the clock granularities on the machines involved: on
the pmaxes it was between 15 and 16 milliseconds. and on the sunl!’s
between 9 and 10 milliseconds.)

e Tachyons which are due to poor clock synchronization. [f the send-
ing machine’s clock is sufficiently far ahead of the receiver’s. then the
measured time difference between sending and receipt will be negative.

In figure 1, the lower horizontal line marks a bound on the clock granularity
(16 milliseconds): thus any points which appear below the line are due to
poor clock synchronization, and those between the two horizontal lines (the
upper one is y=0) may be due to clock granularity as well.

3 Preserving Causality

An obvious answer to the problem of tachvons is simply to synchronize the
clocks of the processes at the beginning of a computation. This will not
always be possible, however. Often the person running the parallel program
will not be the exclusive owner or user of the machine. and may not be
authorized to interfere with the system clocks. More importantly. though.
this solution makes the assumption that all clocks will run at the same rate
throughout the life of the computation. which is not necessarily true. From
the drift observed during our experiment (see Fig.l), we can see that the
clock rates vary over time.

Lamport [8] proposed ~logical clocks™. a simple solution to the problem
of timestamping events to preserve caunsality. Lach process keeps a counter.
which it increments by 1 after each communication event. Whenever a pro-
cess sends a message, it timestamps the message with its enrrent clock valne.
When a process receives a message. it sets its clock to the maximum of its
current clock and the message’s timestamp. This insures that if A causally
precedes B, then the timestamp of B will be at least as great as the timestamp

of A.

Of course, this comes at the price of eliminating all information abont
the real time intervals between events. One way we have tried to solve this
problem is the following: Have every process keep track of a real time (i.c..
the system clock) and an “offset™. initially 0. The parallel program wili view
its “total time” as being equal to the real time + the offset. Whenever a
message is sent, it will be timestamped with the total time at the sender.
When a message is received. the recipient checks to see if its total time

is at least as great as the message’s timestamp: if not. it will increase its
offset so it is. Thus, just as with Lamport’s logical time. causality will
be preserved; in addition. the difference in timestamp between two events
will be a reasonable approximation to the actual time difference. if not too
many Lamport-style clock corrections intervene. Using this basic idea. we
implemented two different methods for eliminating tachvons in Xab.

3.1 Approach 1: Real-time Logical Timestamps

The first method we used to insert (extended) logical timestamps into trace
files was to modify Xab directly. The Xab instrumentation was changed so
that before sending a message. a timestamp is inserted: when the messaee
is received, the timestamp is immediately checked and the local clock offset
changed if necessary.

Unfortunately, there are several pvm calls (such as pvm_barrier() and
pvm_pstatus()) that communicate information at a lower level, so that tachyons
can be introduced but there are no messages visible at the Xab level. Without
seriously interfering with the program execution by inserting extra messages.
the only way to enforce causality in these cases would be to modify pyvm di-
rectly. The PVM developers are currently integrating Xab-stvle events into

PVM version 3.

3.2 Approach 2: An Xab Postprocessor

Our second approach was to post-process the Xab trace. Of course. this will
not help during realtime monitoring, but is a much more general method. in
that it can be extended to handle pvin_barrier(). pvm_pstatus(). cte.

The basic algorithm is to use the event trace to construct the communi-
cation flow DAG (Directed Acyclic Graph) for the program, a graph where
a node corresponds to each event and an edge corresponds to the flow of

information between two events. [or example, there is an edge from any
event to the next event at the same process, an edge between each send and
its corresponding receive, an edge between a barrier and each corresponding
barrier.done, etc. Once the DAG is constructed, it is traversed in a topolog-
ical order, and each node’s timestamp is corrected to he at least as great as
the maximum timestamp of any of its predecessors. The complexity of this
computation is O(E*P) in the worst case, where [is the number of events
and P is the number of processes.

Note that this DAG exactly captures the notion of causality, and since
each node has a timestamp guaranteed to be greater than any of its ancestors.
the corrected timestamps provided by this algorithm will be the same as those
provided by our first approach. Thus the processed tracefile can be replaved
throug" Xab and a causality-preserving event ordering will be observed.

4 Observations

In order to measure the distortion produced by our corrected timestamps., we
ran the experiment in section 2 calculating the value that our offsets would
take on during the computation. Figure 2 shows the progression of the values
of the clock offsets over time; note that these values can be viewed as the
maximum distortion of the time difference that may be observed between two
events. QOver the course of a computation, these scem to get rather large. up
to 2.5 seconds over the course of a 165 minute run in this case. This is to
be expected, since a single erroncous clock will affect the offsets of all the
processes to which it communicates.

5 Discussion and Future Work

We have observed that due to poor clock synchronization (combined with
clock drift) and relatively large clock granularity, tachyons do indeed occur
on a local ethernet, and have explored one general method for correcting
the event times in a trace file to eliminate them. We have shown that it is
possible to eliminate tachyons, though this comes with the cost of introducing
some distortion when trying to figure out the time that has actnally passed
between two events.

6

Fig. 2: “leock 2ffser Progressisn

25e+06 T T —T S — T
TITLLLALERARE
[T B
Ze+06 | i
it
o 15es08 4
N
2
o
€
N
g ‘.-=,~06[> 1
500000 |- 083 4
EERAE
sagine
2
JLed88ic°
0 5 19 15 20 25)

It:ration (5 minute intervals)

Figure 2: Offset Progression Over Time. Fach point represents the clock
offset at one machine during one iteration.

There are several further directions to pursue in this area. For example.
it seems as if our post-processor could provide a range of possible times for
each event, rather than just a (relatively arbitrary) causaiity-preser—-ing time
as it does now. In addition, it might be possible to provide additional useful
information at runtime, such as detecting race conditions, perhaps using an
algorithm like that in [9]. Finally, the user might be interested in seeing the
DAG itself, which could be an additional usefu! debugging tool.

6 Availablility

Xab and the post-processor (xab-post) described in section 3.2 can be ob-
tained from netlib. Simply send email to netlibQornl.gov with the message
“send index from pvm/xab”. An index of the software and reports on Xab
will be returned to you with instructions on how to cbtain the various pieces.

References

[1] Gregory R. Andrews. Paradigms for process interaction in distribnted
programs. ACM Computing Surveys, 23(1):49-90. March 1991.

[2] A. Begueclin, J. Dongarra, G. A. Geist, and V. 8. Sunderam. Visuaiiza-
tion and debugging in a heterogeneous environment. [EEE Compulcr.
June 1993. To appear.

(3] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sun-
deram. A users’ guide to PVM parallel virtnal machine. Technical
Report ORNL/TM-11826, Oak Ridge National Laboratory, July 1991.

[4] Adam Beguelin. Xab: A tool for monitoring pvm programs. In Workshop
on Heterogeneous Processing, pages 92-97, Los Alamitos. California,
April 1993. IEEE Computer Society Press.

[5] C.J. Fidge. Partial orders for parallel debugging. In SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, pages 183191, May
1988.

[6) A. Geist. A. Beguelin. J. J. Dongarra. W. Jiang, R. Manchek. and V. S.
Sunderam. PV M 3 user’s guide and reference manual. Technical Report
ORNL/TM-12157, Qak Ridge National Laboratory. May 1993.

(7] M. Heath and J. Etheridge. Visualizing the performance of parallel
programs. [EEE Software. 3(5):29-39. September 1991,

[3] Leslie Lamport. Time. clocks. and the ordering of events in a distribnted
svstem. Communications of the AC M. 21(7):338-565. July 1978,

(9] Robert H.B. Netzer and Barton P. Miller. Optimal tracing and replay
for deugging message-passing parallel programs. In Supercompuling 9.
gging ge-| gp prog ! /
pages 502-511. IEEE Computing Society Press. 1992.

10] V. S. Sunderam. PV M : A framework for parallel distributed compnting,
! ! 8
Concurrency: Practice and Frperience. 2(:4):315-339. December 1990,

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Pubiie reSprang Surden for this " e o ey |m-mmmmm

g 9) GatH Ources.

mmm-_

of
wwmm
- mmmnnsmmw 0C 20%03.

g they amammmm

g one
CONSCUON of INMEIMETION, -Tm rORUTIng this urden,
o.um Suleg 1204, Artington, VA 12202-4381, snd 0 the Office of

s AGENCY USE ONLY (Leave brank) | 2. REPORT OATE
JUNE 1993

S
3. REPORT TYPE AND OATES COVERED

e Sy o ———
4. TITLE AND SUBTITLE _) _
Causality-Preserving Timestamps in

Distribhuted Programs

[& AuUTHOR(S)
Adams Beguelin, Erik Seligman

S. FUNDING NUMBERS
MDAS72-90-C-0035

TSy Yy
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3891

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU-CS-©3-167

B YT T YT YTt =T
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA/ISTO
DARPA/CMO

10. SPONSOQRING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

See Attachement.

s
12a. QISTRIBUTION / AVAILABILITY STATEMENT

12b. DISTRIBUTION .CODE

b ———————
13. ASSTRACT (Maximum 200 words)

See attachment.

14, WIJ!Ei TERMS 18. gumtl OF PAGES
16. PRICE COOD¢E
A YT — e YT T A TP Y~ T — “
1. ﬁmi; CLASSIFICATION [18. SECURITY CLASSFICATION [19. SICURTY QLASSIFICATION | 20. LIMITATION OF ASSTRACT
OF REPORT OF THIS PAGE OF ABSTRACY
b su—
NSN 73540-01-280-3300 Standard Form (Rev 2-89)

298
by ANY W 23918

4

€9 or

